mahitiloka24.

MahitiLoka 24 is your go-to destination for high-quality educational resources. We offer comprehensive tutorials, engaging multimedia, interactive quizzes, and expert insights across various subjects. Join our vibrant community to enhance your learning experience, access personalized support, and stay updated with the latest educational trends. Start your journey with MahitiLoka24 and unlock a world of knowledge today!

Stay Conneted

ads header

Friday, 7 July 2023

ಗುರುತ್ವಾಕರ್ಷಣೆ

 


ನ್ಯೂಟನ್ರ ಸಾರ್ವತ್ರಿಕ ಗುರುತ್ವಾಕರ್ಷಣೆಯ ನಿಯಮ

ಗುರುತ್ವಾಕರ್ಷಣೆಯ ಬಲವು ಎರಡು ದ್ರವ್ಯರಾಶಿಗಳ ನಡುವಿನ ಆಕರ್ಷಕ ಶಕ್ತಿಯಾಗಿದೆ m 1 ಮತ್ತು m 2 ದೂರದಿಂದ ಬೇರ್ಪಡಿಸಲಾಗಿದೆ.

ಎರಡು ಬಿಂದು ವಸ್ತುಗಳ ನಡುವೆ ಕಾರ್ಯನಿರ್ವಹಿಸುವ ಗುರುತ್ವಾಕರ್ಷಣೆಯ ಬಲವು ಅವುಗಳ ದ್ರವ್ಯರಾಶಿಗಳ ಉತ್ಪನ್ನಕ್ಕೆ ಅನುಪಾತದಲ್ಲಿರುತ್ತದೆ ಮತ್ತು ಅವುಗಳ ನಡುವಿನ ಅಂತರದ ವರ್ಗಕ್ಕೆ ವಿಲೋಮ ಅನುಪಾತದಲ್ಲಿರುತ್ತದೆ.

ಇಲ್ಲಿ G ಯು ಸಾರ್ವತ್ರಿಕ ಗುರುತ್ವಾಕರ್ಷಣೆಯ ಸ್ಥಿರವಾಗಿರುತ್ತದೆ. G ಯ ಮೌಲ್ಯವು 6.67 X 10 -11 Nm 2 kg -2 ಮತ್ತು ಬ್ರಹ್ಮಾಂಡದಾದ್ಯಂತ ಒಂದೇ ಆಗಿರುತ್ತದೆ.

G ಯ ಮೌಲ್ಯವು ದೇಹಗಳ ಸ್ವರೂಪ ಮತ್ತು ಗಾತ್ರ ಮತ್ತು ಅವುಗಳ ನಡುವಿನ ಮಾಧ್ಯಮದ ಸ್ವರೂಪದಿಂದ ಸ್ವತಂತ್ರವಾಗಿರುತ್ತದೆ.

Gis [M -1 L 3 T -2 ] ನ ಆಯಾಮದ ಸೂತ್ರ .

ಗುರುತ್ವಾಕರ್ಷಣೆಯ ಬಲದ ಬಗ್ಗೆ ಪ್ರಮುಖ ಅಂಶಗಳು

(i) ಗುರುತ್ವಾಕರ್ಷಣೆಯ ಬಲವು ಕೇಂದ್ರ ಮತ್ತು ಸಂಪ್ರದಾಯವಾದಿ ಶಕ್ತಿಯಾಗಿದೆ.

(ii) ಇದು ಪ್ರಕೃತಿಯಲ್ಲಿ ಅತ್ಯಂತ ದುರ್ಬಲ ಶಕ್ತಿಯಾಗಿದೆ.

(iii) ಇದು ಸ್ಥಾಯೀವಿದ್ಯುತ್ತಿನ ಬಲಕ್ಕಿಂತ 1036 ಪಟ್ಟು ಚಿಕ್ಕದಾಗಿದೆ ಮತ್ತು ಪರಮಾಣು ಬಲಕ್ಕಿಂತ 10'l8 ಪಟ್ಟು ಚಿಕ್ಕದಾಗಿದೆ.

(iv) ಗುರುತ್ವಾಕರ್ಷಣೆಯ ನಿಯಮವು ಎಲ್ಲಾ ದೇಹಗಳಿಗೆ ಅವುಗಳ ಗಾತ್ರ, ಆಕಾರ ಮತ್ತು ಸ್ಥಾನವನ್ನು ಲೆಕ್ಕಿಸದೆ ಅನ್ವಯಿಸುತ್ತದೆ.

(v) ಸೂರ್ಯ ಮತ್ತು ಗ್ರಹಗಳ ನಡುವೆ ಕಾರ್ಯನಿರ್ವಹಿಸುವ ಗುರುತ್ವಾಕರ್ಷಣೆಯ ಬಲವು ಕಕ್ಷೆಯ ಚಲನೆಗೆ ಕೇಂದ್ರಾಭಿಮುಖ ಬಲವನ್ನು ಒದಗಿಸುತ್ತದೆ.

(vi) ಭೂಮಿಯ ಗುರುತ್ವಾಕರ್ಷಣೆಯನ್ನು ಗುರುತ್ವಾಕರ್ಷಣೆ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ.

(vii) ನ್ಯೂಟನ್‌ನ ಚಲನೆಯ ಮೂರನೇ ನಿಯಮವು ಗುರುತ್ವಾಕರ್ಷಣೆಯ ಬಲಕ್ಕೆ ಉತ್ತಮವಾಗಿದೆ. ಇದರರ್ಥ ಎರಡು ಕಾಯಗಳ ನಡುವಿನ ಗುರುತ್ವಾಕರ್ಷಣೆಯ ಶಕ್ತಿಗಳು ಕ್ರಿಯೆ-ಪ್ರತಿಕ್ರಿಯೆ ಜೋಡಿಗಳು.

ಗುರುತ್ವಾಕರ್ಷಣೆಯ ಬಲಕ್ಕೆ ಸಂಬಂಧಿಸಿದಂತೆ ಈ ಕೆಳಗಿನ ಮೂರು ಅಂಶಗಳು ಮುಖ್ಯವಾಗಿವೆ

(i) ಸ್ಥಾಯೀವಿದ್ಯುತ್ತಿನ ಬಲದಂತೆ, ಇದು ಕಣಗಳ ನಡುವಿನ ಮಾಧ್ಯಮದಿಂದ ಸ್ವತಂತ್ರವಾಗಿರುತ್ತದೆ.

(ii) ಇದು ಸ್ವಭಾವತಃ ಸಂಪ್ರದಾಯವಾದಿಯಾಗಿದೆ.

(iii) ಇದು ಎರಡು ಬಿಂದು ದ್ರವ್ಯರಾಶಿಗಳ ನಡುವಿನ ಬಲವನ್ನು ವ್ಯಕ್ತಪಡಿಸುತ್ತದೆ (ನಗಣ್ಯ ಪರಿಮಾಣದ). ಆದಾಗ್ಯೂ, ಗೋಳಾಕಾರದ ಕಾಯಗಳ ಬಾಹ್ಯ ಬಿಂದುಗಳಿಗೆ ಇಡೀ ದ್ರವ್ಯರಾಶಿಯು ಅದರ ದ್ರವ್ಯರಾಶಿಯ ಕೇಂದ್ರದಲ್ಲಿ ಕೇಂದ್ರೀಕೃತವಾಗಿದೆ ಎಂದು ಊಹಿಸಬಹುದು.

ನ್ಯೂಟನ್‌ನ ಗುರುತ್ವಾಕರ್ಷಣೆಯ ನಿಯಮವು ಹೆಚ್ಚಿನ ದೂರದಲ್ಲಿ ಮತ್ತು ಅತಿ ಕಡಿಮೆ ಅಂತರದಲ್ಲಿ ಇರುವ ವಸ್ತುಗಳಿಗೆ ಸರಕುಗಳನ್ನು ಹಿಡಿದಿಟ್ಟುಕೊಳ್ಳುತ್ತದೆ. ವಸ್ತುಗಳ ನಡುವಿನ ಅಂತರವು 10-9 ಮೀ ಗಿಂತ ಕಡಿಮೆಯಿರುವಾಗ ಅದು ವಿಫಲಗೊಳ್ಳುತ್ತದೆ, ಅಂದರೆ ಇಂಟರ್ಮೋಲಿಕ್ಯುಲರ್ ಅಂತರಗಳ ಕ್ರಮದಲ್ಲಿ.

ಗುರುತ್ವಾಕರ್ಷಣೆಯಿಂದಾಗಿ ವೇಗವರ್ಧನೆ

ಭೂಮಿಯ ಗುರುತ್ವಾಕರ್ಷಣೆಯಿಂದ ಮುಕ್ತವಾಗಿ ಬೀಳುವ ವಸ್ತುವಿನಲ್ಲಿ ಉತ್ಪತ್ತಿಯಾಗುವ ಏಕರೂಪದ ವೇಗವರ್ಧನೆಯನ್ನು ಗುರುತ್ವಾಕರ್ಷಣೆಯಿಂದ ವೇಗವರ್ಧನೆ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ.

ಇದನ್ನು g ನಿಂದ ಸೂಚಿಸಲಾಗುತ್ತದೆ ಮತ್ತು ಅದರ ಘಟಕವು m/s 2 ಆಗಿದೆ . ಇದು ವೆಕ್ಟರ್ ಪ್ರಮಾಣವಾಗಿದೆ ಮತ್ತು ಅದರ ದಿಕ್ಕು ಭೂಮಿಯ ಮಧ್ಯಭಾಗದಲ್ಲಿದೆ.

g ನ ಮೌಲ್ಯವು ಗುರುತ್ವಾಕರ್ಷಣೆಯ ಅಡಿಯಲ್ಲಿ ಮುಕ್ತವಾಗಿ ಬೀಳುವ ವಸ್ತುವಿನ ದ್ರವ್ಯರಾಶಿಯಿಂದ ಸ್ವತಂತ್ರವಾಗಿರುತ್ತದೆ.

g ನ ಮೌಲ್ಯವು ಸ್ಥಳದಿಂದ ಸ್ಥಳಕ್ಕೆ ಸ್ವಲ್ಪ ಬದಲಾಗುತ್ತದೆ. ಎಲ್ಲಾ ಪ್ರಾಯೋಗಿಕ ಉದ್ದೇಶಗಳಿಗಾಗಿ g ನ ಮೌಲ್ಯವನ್ನು 9.8 m/s 2 ಎಂದು ತೆಗೆದುಕೊಳ್ಳಲಾಗುತ್ತದೆ .

ಚಂದ್ರನ ಮೇಲೆ ಗುರುತ್ವಾಕರ್ಷಣೆಯಿಂದಾಗಿ ವೇಗವರ್ಧನೆಯ ಮೌಲ್ಯವು ಸುಮಾರು. ಭೂಮಿಯ ಮೇಲೆ ಮತ್ತು ಸೂರ್ಯನ ಮೇಲೆ ಆರನೇ ಒಂದು ಭಾಗವು ಭೂಮಿಯ ಮೇಲಿರುವ 27 ಪಟ್ಟು ಹೆಚ್ಚು.

ಗ್ರಹಗಳಲ್ಲಿ, ಗುರುತ್ವಾಕರ್ಷಣೆಯ ವೇಗವರ್ಧನೆಯು ಪಾದರಸದ ಮೇಲೆ ಕನಿಷ್ಠವಾಗಿರುತ್ತದೆ.

g ಮತ್ತು a ನಡುವಿನ ಸಂಬಂಧವನ್ನು ಇವರಿಂದ ನೀಡಲಾಗಿದೆ

g = Gm / R 2

ಅಲ್ಲಿ M = ಭೂಮಿಯ ದ್ರವ್ಯರಾಶಿ = 6.0 * 10 24 ಕೆಜಿ ಮತ್ತು R = ಭೂಮಿಯ ತ್ರಿಜ್ಯ = 6.38 * 10 6 ಮೀ.

ಭೂಮಿಯ ಮೇಲ್ಮೈಗಿಂತ ಎತ್ತರ h ನಲ್ಲಿ ಗುರುತ್ವಾಕರ್ಷಣೆಯ ವೇಗವರ್ಧನೆಯಿಂದ ನೀಡಲಾಗುತ್ತದೆ

g h = Gm / (R+h) 2 = g (1 2h / R)

ಗುರುತ್ವಾಕರ್ಷಣೆಯಿಂದಾಗಿ ವೇಗವರ್ಧನೆಯ ಮೇಲೆ ಪರಿಣಾಮ ಬೀರುವ ಅಂಶಗಳು

(i) ಗುರುತ್ವಾಕರ್ಷಣೆಯಿಂದಾಗಿ ಭೂಮಿಯ ವೇಗವರ್ಧನೆಯ ಆಕಾರ g &infi; 1 / R 2 ಭೂಮಿಯು ಅಂಡಾಕಾರದ ಆಕಾರದಲ್ಲಿದೆ. ಧ್ರುವಗಳಲ್ಲಿನ ಅದರ ವ್ಯಾಸವು ಸಮಭಾಜಕದಲ್ಲಿ ಅದರ ವ್ಯಾಸಕ್ಕಿಂತ ಸರಿಸುಮಾರು 42 ಕಿಮೀ ಕಡಿಮೆಯಾಗಿದೆ. ಆದ್ದರಿಂದ, ಸಮಭಾಜಕದಲ್ಲಿ g ಕನಿಷ್ಠ ಮತ್ತು ಧ್ರುವಗಳಲ್ಲಿ ಗರಿಷ್ಠವಾಗಿರುತ್ತದೆ.

(ii) ತನ್ನ ಸ್ವಂತ ಅಕ್ಷದ ಬಗ್ಗೆ ಭೂಮಿಯ ತಿರುಗುವಿಕೆ ω ತನ್ನ ಸ್ವಂತ ಅಕ್ಷದ ಸುತ್ತ ಭೂಮಿಯ ತಿರುಗುವಿಕೆಯ ಕೋನೀಯ ವೇಗವಾಗಿದ್ದರೆ, ಅಕ್ಷಾಂಶವನ್ನು ಹೊಂದಿರುವ ಸ್ಥಳದಲ್ಲಿ ಗುರುತ್ವಾಕರ್ಷಣೆಯ ವೇಗವರ್ಧನೆಯು λ ಅನ್ನು ನೀಡುತ್ತದೆ

g' = g Rω 2 cos 2 λ

ಧ್ರುವಗಳಲ್ಲಿ λ = 90° ಮತ್ತು g' = g

ಆದ್ದರಿಂದ, ಧ್ರುವಗಳಲ್ಲಿ ತನ್ನದೇ ಆದ ಅಕ್ಷದ ಸುತ್ತ ಭೂಮಿಯ ತಿರುಗುವಿಕೆಯ ಪರಿಣಾಮವಿಲ್ಲ.

ಸಮಭಾಜಕದಲ್ಲಿ λ = 0° ಮತ್ತು g' = g Rω 2

ಸಮಭಾಜಕದಲ್ಲಿ g ನ ಮೌಲ್ಯವು ಕನಿಷ್ಠವಾಗಿರುತ್ತದೆ

ಭೂಮಿಯು ತನ್ನದೇ ಆದ ಅಕ್ಷದ ಸುತ್ತ ತನ್ನ ತಿರುಗುವಿಕೆಯನ್ನು ಸ್ಟೇಪ್ ಮಾಡಿದರೆ, ನಂತರ g ಧ್ರುವಗಳಲ್ಲಿ ಬದಲಾಗದೆ ಉಳಿಯುತ್ತದೆ ಆದರೆ ಸಮಭಾಜಕದಲ್ಲಿ Rω 2 ಹೆಚ್ಚಾಗುತ್ತದೆ.

(iii) ಎತ್ತರದ ಪರಿಣಾಮ ಭೂಮಿಯ ಮೇಲ್ಮೈಯಿಂದ ಎತ್ತರ h ನಲ್ಲಿ g ಮೌಲ್ಯ

g' = g / (1 + h / R) 2

ಆದ್ದರಿಂದ ಎತ್ತರದೊಂದಿಗೆ g ಕಡಿಮೆಯಾಗುತ್ತದೆ.

(iv) ಆಳದ ಪರಿಣಾಮ ಭೂಮಿಯ ಮೇಲ್ಮೈಯಿಂದ ಗ್ಯಾಟ್ ಆಳ h A ಮೌಲ್ಯ

g' = g * (1 h / R)

ಆದ್ದರಿಂದ ಭೂಮಿಯ ಮೇಲ್ಮೈಯಿಂದ ಆಳದೊಂದಿಗೆ g ಕಡಿಮೆಯಾಗುತ್ತದೆ.

ಭೂಮಿಯ ಕೇಂದ್ರದಲ್ಲಿ g ಮೌಲ್ಯವು ಶೂನ್ಯವಾಗುತ್ತದೆ.

ಗುರುತ್ವಾಕರ್ಷಣೆಯ ಕ್ಷೇತ್ರ

ಯಾವುದೇ ದೇಹದ ಸುತ್ತಮುತ್ತಲಿನ ಜಾಗದಲ್ಲಿ ಅದರ ಗುರುತ್ವಾಕರ್ಷಣೆಯನ್ನು ಇತರ ದೇಹಗಳು ಅನುಭವಿಸಬಹುದಾದ ಜಾಗವನ್ನು ಗುರುತ್ವಾಕರ್ಷಣೆಯ ಕ್ಷೇತ್ರ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ .

ಗುರುತ್ವಾಕರ್ಷಣೆಯ ಕ್ಷೇತ್ರದ ತೀವ್ರತೆ

ಗುರುತ್ವಾಕರ್ಷಣೆಯ ಕ್ಷೇತ್ರದ ಯಾವುದೇ ಹಂತದಲ್ಲಿ ಭೂಮಿಯ ಮೇಲೆ ಪ್ರತಿ ಘಟಕ ದ್ರವ್ಯರಾಶಿಗೆ ಕಾರ್ಯನಿರ್ವಹಿಸುವ ಗುರುತ್ವಾಕರ್ಷಣೆಯ ಬಲವನ್ನು ಆ ಹಂತದಲ್ಲಿ ಗುರುತ್ವಾಕರ್ಷಣೆಯ ಕ್ಷೇತ್ರದ ತೀವ್ರತೆ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ.

ಇದನ್ನು E g ಅಥವಾ I ನಿಂದ ಸೂಚಿಸಲಾಗುತ್ತದೆ.

E g ಅಥವಾ I = F / m

M ದ್ರವ್ಯರಾಶಿಯ ದೇಹದಿಂದ r ದೂರದಲ್ಲಿ ಗುರುತ್ವಾಕರ್ಷಣೆಯ ಕ್ಷೇತ್ರದ ತೀವ್ರತೆಯನ್ನು ನೀಡಲಾಗುತ್ತದೆ

E g ಅಥವಾ I = GM / r 2

ಇದು ವೆಕ್ಟರ್ ಪ್ರಮಾಣವಾಗಿದೆ ಮತ್ತು ಅದರ ದಿಕ್ಕು ದೇಹದ ಗುರುತ್ವಾಕರ್ಷಣೆಯ ಕೇಂದ್ರದ ಕಡೆಗೆ ಇರುತ್ತದೆ.

ಇದರ S1 ಘಟಕವು N/m ಮತ್ತು ಅದರ ಆಯಾಮದ ಸೂತ್ರವು [LT -2 ] ಆಗಿದೆ.

ಗುರುತ್ವಾಕರ್ಷಣೆಯ ದ್ರವ್ಯರಾಶಿ M g ಅನ್ನು ನ್ಯೂಟನ್ರ ಗುರುತ್ವಾಕರ್ಷಣೆಯ ನಿಯಮದಿಂದ ವ್ಯಾಖ್ಯಾನಿಸಲಾಗಿದೆ.

M g = F g / g = W / g = ದೇಹದ ತೂಕ / ಗುರುತ್ವಾಕರ್ಷಣೆಯಿಂದ ವೇಗವರ್ಧನೆ

(M 1 )g / (M 2 )g = F g1 g2 / F g2 g1

ಗುರುತ್ವಾಕರ್ಷಣೆಯ ಸಾಮರ್ಥ್ಯ

ಗುರುತ್ವಾಕರ್ಷಣೆಯ ಕ್ಷೇತ್ರದ ಯಾವುದೇ ಹಂತದಲ್ಲಿ ಗುರುತ್ವಾಕರ್ಷಣೆಯ ಸಾಮರ್ಥ್ಯವು ಅನಂತತೆಯಿಂದ ಆ ಹಂತಕ್ಕೆ ಅತ್ಯಂತ ಹಗುರವಾದ ದೇಹವನ್ನು ತರುವಲ್ಲಿ ಪ್ರತಿ ಘಟಕ ದ್ರವ್ಯರಾಶಿಗೆ ಮಾಡಿದ ಕೆಲಸಕ್ಕೆ ಸಮಾನವಾಗಿರುತ್ತದೆ.

ಇದನ್ನು V g ನಿಂದ ಸೂಚಿಸಲಾಗುತ್ತದೆ .

ಗುರುತ್ವಾಕರ್ಷಣೆಯ ವಿಭವ, V g = W / m = GM / r

ಇದರ SI ಘಟಕವು J / kg ಮತ್ತು ಇದು ಸ್ಕೇಲಾರ್ ಪ್ರಮಾಣವಾಗಿದೆ. ಇದರ ಆಯಾಮದ ಸೂತ್ರವು [L 3 r -2 ] ಆಗಿದೆ.

ಕೆಲಸ W ಅನ್ನು ಪಡೆಯುವುದರಿಂದ, ಅಂದರೆ ಅದು ಋಣಾತ್ಮಕವಾಗಿರುತ್ತದೆ, ಗುರುತ್ವಾಕರ್ಷಣೆಯ ಸಾಮರ್ಥ್ಯವು ಯಾವಾಗಲೂ ಋಣಾತ್ಮಕವಾಗಿರುತ್ತದೆ.

ಗುರುತ್ವಾಕರ್ಷಣೆಯ ಸಂಭಾವ್ಯ ಶಕ್ತಿ

ಗುರುತ್ವಾಕರ್ಷಣೆಯ ಕ್ಷೇತ್ರದ ಯಾವುದೇ ಹಂತದಲ್ಲಿ ಯಾವುದೇ ವಸ್ತುವಿನ ಗುರುತ್ವಾಕರ್ಷಣೆಯ ಸಂಭಾವ್ಯ ಶಕ್ತಿಯು ಅದನ್ನು ಅನಂತತೆಯಿಂದ ಆ ಹಂತಕ್ಕೆ ತರುವಲ್ಲಿ ಮಾಡಿದ ಕೆಲಸಕ್ಕೆ ಸಮಾನವಾಗಿರುತ್ತದೆ. ಇದನ್ನು U ನಿಂದ ಸೂಚಿಸಲಾಗುತ್ತದೆ.

ಗುರುತ್ವಾಕರ್ಷಣೆಯ ಸಂಭಾವ್ಯ ಶಕ್ತಿ U = GMm / r

ಋಣಾತ್ಮಕ ಚಿಹ್ನೆಯು ಗುರುತ್ವಾಕರ್ಷಣೆಯ ಸಂಭಾವ್ಯ ಶಕ್ತಿಯು ದೂರದ ಹೆಚ್ಚಳದೊಂದಿಗೆ ಕಡಿಮೆಯಾಗುತ್ತದೆ ಎಂದು ತೋರಿಸುತ್ತದೆ.

ಭೂಮಿಯ ಮೇಲ್ಮೈಯಿಂದ h ಎತ್ತರದಲ್ಲಿ ಗುರುತ್ವಾಕರ್ಷಣೆಯ ಸಂಭಾವ್ಯ ಶಕ್ತಿ

U h = GMm / R + h = mgR / 1 + h / R

ಉಪಗ್ರಹ

ಗ್ರಹದ ಸುತ್ತ ಸುತ್ತುವ ಸ್ವರ್ಗೀಯ ವಸ್ತುವನ್ನು ಉಪಗ್ರಹ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ. ನೈಸರ್ಗಿಕ ಉಪಗ್ರಹಗಳು ಮಾನವ ನಿರ್ಮಿತವಲ್ಲದ ಮತ್ತು ಭೂಮಿಯ ಸುತ್ತ ಸುತ್ತುವ ಸ್ವರ್ಗೀಯ ವಸ್ತುಗಳು. ಕೃತಕ ಉಪಗ್ರಹಗಳು ಭೂಮಿಯ ಸುತ್ತ ಸುತ್ತುತ್ತಿರುವ ಮಾನವ ನಿರ್ಮಿತ ಮತ್ತು ಕೆಲವು ಉದ್ದೇಶಗಳಿಗಾಗಿ ಉಡಾವಣೆಯಾದ ನಿವೇನ್ ವಸ್ತುಗಳು.

ಉಪಗ್ರಹದ ಅವಧಿ

T = 2π r 3 / GM

= 2π (R + h) 3 / g [ g = GM / R 2

ಭೂಮಿಯ ಮೇಲ್ಮೈ ಹತ್ತಿರ, ಉಪಗ್ರಹದ ಅವಧಿ

T = 2π R 3 / GM = 3π / Gp

T = 2π R / g = 5.08 * 10 3 ಸೆ = 84 ನಿಮಿಷ.

ಇಲ್ಲಿ p ಎಂಬುದು ಭೂಮಿಯ ಸರಾಸರಿ ಸಾಂದ್ರತೆಯಾಗಿದೆ.

ಕೃತಕ ಉಪಗ್ರಹಗಳು ಎರಡು ವಿಧಗಳಾಗಿವೆ:

1. ಭೂಸ್ಥಿರ ಅಥವಾ ಪಾರ್ಕಿಂಗ್ ಉಪಗ್ರಹಗಳು

ಭೂಮಿಯ ಮೇಲಿನ ವೀಕ್ಷಕರಿಗೆ ಒಂದು ನಿರ್ದಿಷ್ಟ ಎತ್ತರದಲ್ಲಿ ಸ್ಥಿರ ಸ್ಥಾನದಲ್ಲಿ ಕಂಡುಬರುವ ಉಪಗ್ರಹವನ್ನು ಭೂಸ್ಥಿರ ಅಥವಾ ಪಾರ್ಕಿಂಗ್ ಉಪಗ್ರಹ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ.

ಭೂಮಿಯ ಮೇಲ್ಮೈಯಿಂದ ಎತ್ತರ = 36000 ಕಿಮೀ

ಕಕ್ಷೆಯ ತ್ರಿಜ್ಯ = 42400 ಕಿ.ಮೀ

ಅವಧಿ = 24 ಗಂ

ಕಕ್ಷೆಯ ವೇಗ = 3.1 km/s

ಕೋನೀಯ ವೇಗ = 2π / 24 = π / 12 ರಾಡ್ / ಗಂ

ಅಲ್ಲಿ ಉಪಗ್ರಹಗಳು ಸಮಭಾಜಕ ಕಕ್ಷೆಗಳಲ್ಲಿ ಭೂಮಿಯ ಸುತ್ತ ಸುತ್ತುತ್ತವೆ.

ಉಪಗ್ರಹದ ಕೋನೀಯ ವೇಗವು ಅದರ ಸ್ವಂತ ಅಕ್ಷದ ಬಗ್ಗೆ ಭೂಮಿಯ ಕೋನೀಯ ವೇಗದ ಪ್ರಮಾಣ ಮತ್ತು ದಿಕ್ಕಿನಲ್ಲಿ ಒಂದೇ ಆಗಿರುತ್ತದೆ.

ಈ ಉಪಗ್ರಹಗಳನ್ನು ಸಂವಹನ ಉದ್ದೇಶಕ್ಕಾಗಿ ಬಳಸಲಾಗುತ್ತದೆ.

INSAT 2B ಮತ್ತು INSAT 2C ಭಾರತದ ಭೂಸ್ಥಿರ ಉಪಗ್ರಹಗಳಾಗಿವೆ.

2. ಧ್ರುವೀಯ ಉಪಗ್ರಹಗಳು

ಇವು ಭೂಮಿಯ ಸುತ್ತ ಧ್ರುವೀಯ ಕಕ್ಷೆಗಳಲ್ಲಿ ಸುತ್ತುವ ಉಪಗ್ರಹಗಳಾಗಿವೆ. ಧ್ರುವೀಯ ಕಕ್ಷೆಯು ಭೂಮಿಯ ಸಮಭಾಜಕ ಸಮತಲದೊಂದಿಗೆ ಇಳಿಜಾರಿನ ಕೋನ 90 ° ಆಗಿರುವ ಕಕ್ಷೆಯಾಗಿದೆ.

ಭೂಮಿಯ ಮೇಲ್ಮೈಯಿಂದ ಎತ್ತರ = 880 ಕಿಮೀ

ಸಮಯದ ಅವಧಿ = 84 ನಿಮಿಷಗಳು

ಕಕ್ಷೆಯ ವೇಗ = 8 ಕಿಮೀ / ಸೆ

ಕೋನೀಯ ವೇಗ = 2π / 84 = π / 42 ರಾಡ್ / ನಿಮಿಷ.

ಅಲ್ಲಿ ಉಪಗ್ರಹಗಳು ಧ್ರುವೀಯ ಕಕ್ಷೆಗಳಲ್ಲಿ ಭೂಮಿಯ ಸುತ್ತ ಸುತ್ತುತ್ತವೆ.

ಈ ಉಪಗ್ರಹಗಳನ್ನು ಹವಾಮಾನ ಮುನ್ಸೂಚನೆ, ವಾತಾವರಣದ ಮೇಲಿನ ಪ್ರದೇಶವನ್ನು ಅಧ್ಯಯನ, ಮ್ಯಾಪಿಂಗ್ ಇತ್ಯಾದಿಗಳಲ್ಲಿ ಬಳಸಲಾಗುತ್ತದೆ.

PSLV ಸರಣಿಯ ಉಪಗ್ರಹಗಳು ಭಾರತದ ಧ್ರುವೀಯ ಉಪಗ್ರಹಗಳಾಗಿವೆ.

ಕಕ್ಷೀಯ ವೇಗ

ಉಪಗ್ರಹದ ಕಕ್ಷೆಯ ವೇಗವು ಭೂಮಿಯ ಸುತ್ತ ಒಂದು ನಿರ್ದಿಷ್ಟ ಕಕ್ಷೆಗೆ ಉಪಗ್ರಹಕ್ಕೆ ಅಗತ್ಯವಿರುವ ಕನಿಷ್ಠ ವೇಗವಾಗಿದೆ.

ಉಪಗ್ರಹದ ಕಕ್ಷೆಯ ವೇಗವನ್ನು ಇವರಿಂದ ನೀಡಲಾಗುತ್ತದೆ

v o = GM / r = R g / R + h

ಅಲ್ಲಿ, M = ಗ್ರಹದ ದ್ರವ್ಯರಾಶಿ, R = ಗ್ರಹದ ತ್ರಿಜ್ಯ ಮತ್ತು h = ಗ್ರಹದ ಮೇಲ್ಮೈಯಿಂದ ಉಪಗ್ರಹದ ಎತ್ತರ.

ಉಪಗ್ರಹವು ಭೂಮಿಯ ಮೇಲ್ಮೈ ಬಳಿ ಸುತ್ತುತ್ತಿದ್ದರೆ, ನಂತರ r = (R + h) =- R

ಈಗ ಕಕ್ಷೆಯ ವೇಗ,

v o = gR

= 7.92 ಕಿಮೀ / ಗಂ

v ಅದರ ಕಕ್ಷೆಯಲ್ಲಿರುವ ಉಪಗ್ರಹದ ವೇಗ ಮತ್ತು v o ಕಕ್ಷೆಯಲ್ಲಿ ಚಲಿಸಲು ಅಗತ್ಯವಾದ ಕಕ್ಷೆಯ ವೇಗವಾಗಿದ್ದರೆ, ಆಗ

(i) v < v o , ಆಗ ಉಪಗ್ರಹವು ಪ್ಯಾರಾಬೋಲಿಕ್ ಪಥದಲ್ಲಿ ಚಲಿಸುತ್ತದೆ ಮತ್ತು ಉಪಗ್ರಹವು ಭೂಮಿಗೆ ಹಿಂತಿರುಗುತ್ತದೆ.

(ii) V = v o ಆಗ ಉಪಗ್ರಹವು ಭೂಮಿಯ ಸುತ್ತ ವೃತ್ತಾಕಾರದ ಪಥದಲ್ಲಿ/ಕಕ್ಷೆಯಲ್ಲಿ ಸುತ್ತುತ್ತದೆ.

(iii) v o < V < v e ಆಗಿದ್ದರೆ ಉಪಗ್ರಹವು ದೀರ್ಘವೃತ್ತದ ಕಕ್ಷೆಯಲ್ಲಿ ಭೂಮಿಯ ಸುತ್ತ ಸುತ್ತುತ್ತದೆ.

ಕಕ್ಷೆಯಲ್ಲಿರುವ ಉಪಗ್ರಹದ ಶಕ್ತಿ

ಉಪಗ್ರಹದ ಒಟ್ಟು ಶಕ್ತಿ

ಇ = ಕೆಇ + ಪಿಇ

= GMm / 2r + (- GMm / r)

= GMm / 2r

ಬೈಂಡಿಂಗ್ ಎನರ್ಜಿ

ಉಪಗ್ರಹವನ್ನು ಭೂಮಿಯ (ಗ್ರಹ) ಸುತ್ತಲಿನ ಕಕ್ಷೆಯಿಂದ ಅನಂತಕ್ಕೆ ತೆಗೆದುಹಾಕಲು ಅಗತ್ಯವಿರುವ ಶಕ್ತಿಯನ್ನು ಉಪಗ್ರಹದ ಬಂಧಿಸುವ ಶಕ್ತಿ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ.

ಮೀ ದ್ರವ್ಯರಾಶಿಯ ಉಪಗ್ರಹದ ಬಂಧಕ ಶಕ್ತಿಯನ್ನು ಇವರಿಂದ ನೀಡಲಾಗುತ್ತದೆ

BE = + GMm / 2r

ಎಸ್ಕೇಪ್ ವೆಲಾಸಿಟಿ

ಭೂಮಿಯ ಮೇಲಿನ ತಪ್ಪಿಸಿಕೊಳ್ಳುವ ವೇಗವು ಒಂದು ದೇಹವನ್ನು ಭೂಮಿಯ ಮೇಲ್ಮೈಯಿಂದ ಲಂಬವಾಗಿ ಮೇಲಕ್ಕೆ ಪ್ರಕ್ಷೇಪಿಸಬೇಕಾದ ಕನಿಷ್ಠ ವೇಗವಾಗಿದೆ, ಇದರಿಂದಾಗಿ ಅದು ಭೂಮಿಯ ಗುರುತ್ವಾಕರ್ಷಣೆಯ ಕ್ಷೇತ್ರವನ್ನು ದಾಟುತ್ತದೆ ಮತ್ತು ಎಂದಿಗೂ ಹಿಂತಿರುಗುವುದಿಲ್ಲ.

ಯಾವುದೇ ವಸ್ತುವಿನ ತಪ್ಪಿಸಿಕೊಳ್ಳುವ ವೇಗ

v e = 2GM / R

= 2gR = 8πp GR 2/3

ತಪ್ಪಿಸಿಕೊಳ್ಳುವ ವೇಗವು ದೇಹದ ದ್ರವ್ಯರಾಶಿ ಅಥವಾ ಆಕಾರ ಅಥವಾ ಗಾತ್ರ ಮತ್ತು ದೇಹದ ಪ್ರಕ್ಷೇಪಣದ ದಿಕ್ಕನ್ನು ಅವಲಂಬಿಸಿರುವುದಿಲ್ಲ.

ಭೂಮಿಯಲ್ಲಿ ತಪ್ಪಿಸಿಕೊಳ್ಳುವ ವೇಗ 11.2 ಕಿಮೀ / ಸೆ.

ಕೆಲವು ಪ್ರಮುಖ ಎಸ್ಕೇಪ್ ವೇಗಗಳು

ಸ್ವರ್ಗೀಯ ದೇಹ

ತಪ್ಪಿಸಿಕೊಳ್ಳುವ ವೇಗ

ಚಂದ್ರ

2.3 ಕಿಮೀ/ಸೆ

ಮರ್ಕ್ಯುರಿ

4.28 ಕಿಮೀ/ಸೆ

ಭೂಮಿ

11.2 ಕಿಮೀ/ಸೆ

ಗುರು

60 ಕಿಮೀ/ಸೆ

ಸೂರ್ಯ

618 ಕಿಮೀ/ಸೆ

ನ್ಯೂಟ್ರಾನ್ ನಕ್ಷತ್ರ

2 x 10 5 ಕಿಮೀ/ಸೆ

ಉಪಗ್ರಹದ ತಪ್ಪಿಸಿಕೊಳ್ಳುವ ವೇಗ ಮತ್ತು ಕಕ್ಷೆಯ ವೇಗದ ನಡುವಿನ ಸಂಬಂಧ

v e = 2 v o

ಪ್ರೊಜೆಕ್ಷನ್ U ವೇಗವು ತಪ್ಪಿಸಿಕೊಳ್ಳುವ ವೇಗಕ್ಕೆ ಸಮನಾಗಿದ್ದರೆ (v = v e ), ನಂತರ ಉಪಗ್ರಹವು ಪ್ಯಾರಾಬೋಲಿಕ್ ಮಾರ್ಗವನ್ನು ಅನುಸರಿಸಿ ತಪ್ಪಿಸಿಕೊಳ್ಳುತ್ತದೆ.

ಉಪಗ್ರಹದ ಪ್ರೊಜೆಕ್ಷನ್ u ವೇಗವು ತಪ್ಪಿಸಿಕೊಳ್ಳುವ ವೇಗಕ್ಕಿಂತ ಹೆಚ್ಚಿದ್ದರೆ (v > v e ), ನಂತರ ಉಪಗ್ರಹವು ಹೈಪರ್ಬೋಲಿಕ್ ಮಾರ್ಗವನ್ನು ಅನುಸರಿಸಿ ತಪ್ಪಿಸಿಕೊಳ್ಳುತ್ತದೆ.

ತೂಕವಿಲ್ಲದಿರುವಿಕೆ

ಇದು ದೇಹದ ಪರಿಣಾಮಕಾರಿ ತೂಕ ಶೂನ್ಯವಾಗುವ ಪರಿಸ್ಥಿತಿ,

ತೂಕರಹಿತತೆಯನ್ನು ಸಾಧಿಸಲಾಗುತ್ತದೆ

(i) ಗುರುತ್ವಾಕರ್ಷಣೆಯ ಅಡಿಯಲ್ಲಿ ಮುಕ್ತವಾಗಿ ಬೀಳುವ ಸಮಯದಲ್ಲಿ

(ii) ಬಾಹ್ಯಾಕಾಶ ನೌಕೆ ಅಥವಾ ಉಪಗ್ರಹದ ಒಳಗೆ

(iii) ಭೂಮಿಯ ಮಧ್ಯಭಾಗದಲ್ಲಿ

(iv) ದೇಹವು ಮುಕ್ತವಾಗಿ ಬೀಳುವ ಲಿಫ್ಟ್‌ನಲ್ಲಿ ಮಲಗಿರುವಾಗ.

ಗ್ರಹಗಳ ಚಲನೆಯ ಕೆಪ್ಲರ್ ನಿಯಮಗಳು

(i) ಕಕ್ಷೆಯ ನಿಯಮ ಪ್ರತಿ ಗ್ರಹವು ದೀರ್ಘವೃತ್ತದ ಕಕ್ಷೆಯಲ್ಲಿ ಸೂರ್ಯನ ಸುತ್ತ ಸುತ್ತುತ್ತದೆ ಮತ್ತು ಸೂರ್ಯನು ಅದರ ಒಂದು ಕೇಂದ್ರಬಿಂದುವಾಗಿದೆ.

(ii) ವಿಸ್ತೀರ್ಣದ ನಿಯಮ ಸೂರ್ಯನಿಂದ ಗ್ರಹಕ್ಕೆ ಎಳೆಯಲ್ಪಟ್ಟ ತ್ರಿಜ್ಯದ ವೆಕ್ಟರ್ ಸಮಯದ ಸಮಾನ ಮಧ್ಯಂತರಗಳಲ್ಲಿ ಸಮಾನ ಪ್ರದೇಶಗಳನ್ನು ಹೊರಹಾಕುತ್ತದೆ, ಅಂದರೆ, ಸೂರ್ಯನ ಸುತ್ತ ಗ್ರಹದ ಪ್ರದೇಶದ ವೇಗವು ಸ್ಥಿರವಾಗಿರುತ್ತದೆ.

ಗ್ರಹದ ಏರಿಯಾ ವೇಗ

dA / dt = L / 2m = ಸ್ಥಿರ

ಅಲ್ಲಿ L = ಕೋನೀಯ ಆವೇಗ ಮತ್ತು m = ಗ್ರಹದ ದ್ರವ್ಯರಾಶಿ.

(iii) ಅವಧಿಯ ನಿಯಮ ಸೂರ್ಯನ ಸುತ್ತ ಗ್ರಹದ ಕ್ರಾಂತಿಯ ಅವಧಿಯ ವರ್ಗವು ಅದರ ದೀರ್ಘವೃತ್ತದ ಕಕ್ಷೆಯ ಘನ ಅರೆ-ಪ್ರಮುಖ ಅಕ್ಷಕ್ಕೆ ನೇರವಾಗಿ ಅನುಪಾತದಲ್ಲಿರುತ್ತದೆ.

T 2 &infi; a 3 ಅಥವಾ (T 1 / T 2 ) 2 = (a 1 / a 2 ) 3

ಅಲ್ಲಿ, a = ದೀರ್ಘವೃತ್ತದ ಕಕ್ಷೆಯ ಅರೆ-ಪ್ರಮುಖ ಅಕ್ಷ.

ಪ್ರಮುಖ ಅಂಶಗಳು

(i) ತಪ್ಪಿಸಿಕೊಳ್ಳುವ ವೇಗಕ್ಕಿಂತ ಕಡಿಮೆ ವೇಗದಲ್ಲಿ ಕ್ಷಿಪಣಿಯನ್ನು ಉಡಾಯಿಸಲಾಗುತ್ತದೆ. ಅದರ ಚಲನ ಶಕ್ತಿ ಮತ್ತು ಸಂಭಾವ್ಯ ಶಕ್ತಿಯ ಮೊತ್ತವು ಋಣಾತ್ಮಕವಾಗಿರುತ್ತದೆ.

(ii) ಗುರುಗ್ರಹದ ಕಕ್ಷೆಯ ವೇಗವು ಭೂಮಿಯ ಕಕ್ಷೆಯ ವೇಗಕ್ಕಿಂತ ಕಡಿಮೆಯಾಗಿದೆ.

(iii) ಚಂದ್ರನ ಮೇಲೆ ಬಾಂಬ್ ಸ್ಫೋಟಗೊಳ್ಳುತ್ತದೆ. ಭೂಮಿಯ ಮೇಲಿನ ಸ್ಫೋಟದ ಶಬ್ದವನ್ನು ನೀವು ಕೇಳಲು ಸಾಧ್ಯವಿಲ್ಲ.

(iv) 30 ° C ನಲ್ಲಿ ನೀರಿನಿಂದ ತುಂಬಿದ ಮತ್ತು ಕಾರ್ಕ್ನೊಂದಿಗೆ ಅಳವಡಿಸಲಾದ ಬಾಟಲಿಯನ್ನು ಚಂದ್ರನಿಗೆ ತೆಗೆದುಕೊಳ್ಳಲಾಗುತ್ತದೆ. ಕಾರ್ಕ್ ಅನ್ನು ಚಂದ್ರನ ಮೇಲ್ಮೈಯಲ್ಲಿ ತೆರೆದರೆ ನೀರು ಕುದಿಯುತ್ತದೆ.

(v) ಭೂಮಿಯ ಮೇಲ್ಮೈ ಬಳಿ ಪರಿಭ್ರಮಿಸುವ ಉಪಗ್ರಹಕ್ಕಾಗಿ

(a) ಕಕ್ಷೆಯ ವೇಗ = 8 km/s

(b) ಸಮಯದ ಅವಧಿ = 84 ನಿಮಿಷಗಳು

(ಸಿ) ಕೋನೀಯ ವೇಗ ω = 2π / 84 ರಾಡ್ / ನಿಮಿಷ

= 0.00125 ರಾಡ್ / ಸೆ

(vi) ಜಡತ್ವ ದ್ರವ್ಯರಾಶಿ ಮತ್ತು ಗುರುತ್ವಾಕರ್ಷಣೆಯ ದ್ರವ್ಯರಾಶಿ

(ಎ) ಜಡತ್ವ ದ್ರವ್ಯರಾಶಿ = ಬಲ / ವೇಗವರ್ಧನೆ

(b) ಗುರುತ್ವಾಕರ್ಷಣೆಯ ದ್ರವ್ಯರಾಶಿ = ದೇಹದ ತೂಕ / ಗುರುತ್ವಾಕರ್ಷಣೆಯಿಂದ ವೇಗವರ್ಧನೆ

(ಸಿ) ಅವು ಪ್ರಮಾಣದಲ್ಲಿ ಪರಸ್ಪರ ಸಮಾನವಾಗಿವೆ.

(ಡಿ) ದೇಹದ ಗುರುತ್ವಾಕರ್ಷಣೆಯ ದ್ರವ್ಯರಾಶಿಯು ಅದರ ಸಮೀಪವಿರುವ ಇತರ ದೇಹಗಳ ಉಪಸ್ಥಿತಿಯಿಂದ ಪ್ರಭಾವಿತವಾಗಿರುತ್ತದೆ. ದೇಹದ ಜಡತ್ವ ದ್ರವ್ಯರಾಶಿಯು ಅದರ ಸಮೀಪವಿರುವ ಇತರ ದೇಹಗಳ ಉಪಸ್ಥಿತಿಯಿಂದ ಪ್ರಭಾವಿತವಾಗುವುದಿಲ್ಲ.

 

No comments:

Post a Comment

Blog Archive

Search This Blog

All Right Reserved Copyright ©

Wealth

[getBlock results="4" label="recent" type="col-right"]

Tips

[getBlock results="6" label="recent" type="grid1"]

Health

[getBlock results="5" label="recent" type="block1"]

Videos

[getBlock results='3' label='recent' type='videos']

Love

[getBlock results="6" label="recent" type="grid2"]

Recents

Header Ads

Contact Form

Contact form

Tags

Categories

About Us

There are many variations of passages of Lorem Ipsum available, but the majority have suffered alteration in some form, by injected humour, or randomised words.

Popular

Unlocking Efficiency: Mastering Microsoft Word Home Ribbon Paragraph Shortcut Keys for Document Creation 📝✨

  Creating well-structured, visually appealing documents in Microsoft Word is both an art and a science. Knowing how to navigate and utilize the Home Ribbon, specifically the paragraph shortcut keys, can significantly enhance your document creation process. This blog post will delve into the most useful paragraph shortcut keys on the Home Ribbon and provide practical tips for using them to elevate your Word documents. 📑🎨 The Home Ribbon: Your Command Center 🖥️ The Home Ribbon in Microsoft Word is your go-to toolbar for essential formatting features. It contains tools for font styling, paragraph formatting, and other vital document-editing functions. Understanding and mastering the shortcut keys associated with these tools can save you a considerable amount of time and effort. Paragraph Shortcut Keys: The Essentials 🔑 Here are some of the most important paragraph shortcut keys you should know: Align Left (Ctrl + L) Align Center (Ctrl + E) Align Right (Ctrl + R) Justify (Ctrl + J...

ಪರ್ವತಗಳು ಮತ್ತು ಪ್ರಸ್ಥಭೂಮಿ

ಪರ್ವತಗಳು ಅಂತಹ ಎತ್ತರದ ಪ್ರದೇಶಗಳಾಗಿವೆ, ಅದರ ಇಳಿಜಾರುಗಳು ಕಡಿದಾದವು ಮತ್ತು ಶಿಖರಗಳು ಮೊನಚಾದವು.  ಸಾಮಾನ್ಯವಾಗಿ, ಪರ್ವತಗಳು 1000 ಮೀಟರ್‌ಗಳಿಗಿಂತ ಹೆಚ್ಚು ಎತ್ತರದಲ್ಲಿರುತ್ತವೆ.  1000 ಮೀಟರ್‌ಗಳಿಗಿಂತ ಕಡಿಮೆ ಎತ್ತರವಿರುವ ಪರ್ವತಗಳನ್ನು ಬೆಟ್ಟಗಳು ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ.  ಪರ್ವತ ಅಥವಾ ಬೆಟ್ಟದ ಅತ್ಯುನ್ನತ ಬಿಂದುವನ್ನು ಅದರ ಶಿಖರ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ.  ಪರ್ವತ ಶ್ರೇಣಿಯು ಹಲವಾರು ರೇಖೆಗಳು, ಶಿಖರಗಳು, ಶಿಖರಗಳು ಮತ್ತು ಕಣಿವೆಗಳನ್ನು ಹೊಂದಿರುವ ಪರ್ವತಗಳು ಮತ್ತು ಬೆಟ್ಟಗಳ ಒಂದು ವ್ಯವಸ್ಥೆಯಾಗಿದ್ದು, ನಿರ್ದಿಷ್ಟ ಅವಧಿಯಲ್ಲಿ ರೂಪುಗೊಂಡಿತು ಮತ್ತು ಕಿರಿದಾದ ಬೆಲ್ಟ್ನಲ್ಲಿ ಹರಡುತ್ತದೆ. ಪರ್ವತಗಳ ವರ್ಗೀಕರಣ ಮಡಿಸಿದ ಪರ್ವತಗಳು  : ಈ ಪರ್ವತಗಳು ಅಂತರ್ವರ್ಧಕ ಶಕ್ತಿಗಳಿಂದ ಪ್ರಚೋದಿಸಲ್ಪಟ್ಟ ಸಂಕುಚಿತ ಶಕ್ತಿಗಳ ಫಲಿತಾಂಶಗಳಾಗಿವೆ.  ಭೂಮಿಯೊಳಗೆ ಉತ್ಪತ್ತಿಯಾಗುವ ಶಕ್ತಿಗಳಿಂದಾಗಿ ಬಂಡೆಗಳು (ಭೂಮಿಯ ಮೇಲ್ಮೈಯನ್ನು ಮಡಚಿದಾಗ, ಪರಿಣಾಮವಾಗಿ ಹಿಮಾಲಯ ಉರಲ್, ರಾಕೀಸ್, ಆಂಡಿಸ್, ಅಟ್ಲಾಸ್ ಇತ್ಯಾದಿ. ಮಡಿಸಿದ ಪರ್ವತಗಳ ಉದಾಹರಣೆಗಳು. ಬ್ಲಾಕ್ ಪರ್ವತಗಳು  : ಈ ಪರ್ವತಗಳು ಬಿರುಕು ಕಣಿವೆಗಳ ರಚನೆಗೆ ಕಾರಣವಾಗುವ ಒತ್ತಡದ ಶಕ್ತಿಗಳಿಂದ ಹುಟ್ಟಿಕೊಂಡಿವೆ.  ಇವುಗಳನ್ನು ದೋಷದ ಬ್ಲಾಕ್ ಪರ್ವತಗಳು ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ, ಏಕೆಂದರೆ ಅವು ದೋಷದ ಪರಿಣಾಮವಾಗಿದೆ.  ಕ್ಯಾಲಿಫೋರ್ನಿ...

World Milk Day: History, Significance & More 🥛🌍

                                         Introduction World Milk Day, celebrated every year on June 1st, is a global event that highlights the importance of milk as a global food. Initiated by the Food and Agriculture Organization (FAO) of the United Nations, this day serves to recognize the contributions of the dairy sector to sustainability, economic development, livelihoods, and nutrition. In this blog post, we delve into the history, significance, and various facets of World Milk Day. 🐄🥛 History of World Milk Day World Milk Day was established by the FAO in 2001. The primary aim was to acknowledge the importance of milk in the diet of humans across the globe and to celebrate the dairy sector. June 1st was chosen because several countries were already celebrating milk-related events around this time. This alignment helped to maximize the global impact of the celebrations. The fi...

Pages

Story

[getBlock results="4" label="recent" type="block2"]

Recents

[getWidget results='3' label='recent' type='list']
mahitiloka24.